Difference between revisions of "Simulation Methods in Physics II SS 2021"
(2 intermediate revisions by 2 users not shown)  
Line 86:  Line 86:  
 27.05.2021  '' Holiday (Pfingsten) ''     27.05.2021  '' Holiday (Pfingsten) ''    
    
−   03.06.2021  '' Holiday (Fronleichnam) ''    +   03.06.2021  '' Holiday (Fronleichnam) ''   
    
 10.06.2021  classical water models, classical (pair)interactions/forcefields    10.06.2021  classical water models, classical (pair)interactions/forcefields   
Line 111:  Line 111:  
* For the tutorials, you will get a [[ICP Unix Accounts for Studentspersonal account for the ICP machines]].  * For the tutorials, you will get a [[ICP Unix Accounts for Studentspersonal account for the ICP machines]].  
−  
* For the reports, we have a nice {{Downloadlatextemplate.texLaTeX templatetxt}}.  * For the reports, we have a nice {{Downloadlatextemplate.texLaTeX templatetxt}}.  
<!  <!  
Line 122:  Line 121:  
* A written report (between 5 and 10 pages) has to be handed in for each worksheet. We recommend using LaTeX to prepare the report.  * A written report (between 5 and 10 pages) has to be handed in for each worksheet. We recommend using LaTeX to prepare the report.  
* You have two weeks to prepare the report for each worksheet.  * You have two weeks to prepare the report for each worksheet.  
−  * The report has to be sent to your tutor via email ([[  +  * The report has to be sent to your tutor via email ([[Azade Yazdanyar]] or [[Samuel Tovey]]). 
* Each task within the tutorial is assigned a given number of points. Each student should have 50 % of the points from each tutorial as a prerequisite for the oral examination.  * Each task within the tutorial is assigned a given number of points. Each student should have 50 % of the points from each tutorial as a prerequisite for the oral examination.  
Latest revision as of 10:16, 26 April 2021
Please register for this course on CAMPUS, so that every student can get access to ILIAS. The course will be administered through ILIAS. 
Overview
 Type
 Lecture (2 SWS) and Tutorials "Simulationsmethoden in der Praxis" (2 SWS)
 Lecturers
 Prof. Dr. Christian Holm
 aplProf Dr. Maria Fyta
 Tutors
 Dr. Azade Yazdanyar, Samuel Tovey
 Course language
 English
 Location and Time
 Lecture: Lectures will be uploaded every week to ILIAS as videos
 Tutorials: TBA ; Until further notice, tutorials will be held online. Detailed information is available in ILIAS
The tutorials have their own title "Simulationsmethoden in der Praxis", as they can be attended independently of the lecture and are in fact part part of the Physics MSc module "Fortgeschrittene Simulationsmethoden" and not of the module containing the lecture "Simulation Methods in Physics II".
Tutorials consist of practical exercises at the computer, like small programming tasks, simulations, visualization and data analysis. The tutorials build on each other, therefore continuous attendance is expected.
Scope
The course intends to give an overview about modern simulation methods used in physics today. The stress of the lecture will be to introduce different approaches to simulate a problem, hence we will not go too to deep into specific details but rather try to cover a broad range of methods. For an idea about the content look at the lecture schedule.
Prerequisites
We expect the participants to have basic knowledge in classical and statistical mechanics, thermodynamics, electrodynamics, and partial differential equations, as well as knowledge of a programming language. The knowledge of the previous course Simulation Methods I is expected.
Certificate Requirements
 1. Obtaining 50% of the possible marks in the handin exercises.
The final grade will be determined from the final oral examination.
Oral Examination
Please email to Christian Holm or Maria Fyta in order to arrange a date for the oral examination.
Recommended literature

Daan Frenkel and Berend Smit.
"Understanding Molecular Simulation".
Academic Press, San Diego, 2002.
[DOI] 
Mike P. Allen and Dominik J. Tildesley.
"Computer Simulation of Liquids".
Oxford Science Publications, Clarendon Press, Oxford, 1987.

Rapaport, D. C..
"The Art of Molecular Dynamics Simulation".
Cambridge University Press, 2004.
[DOI] 
D. P. Landau and K. Binder.
"A guide to Monte Carlo Simulations in Statistical Physics".
Cambridge, 2005.

Michael Rubinstein and Ralph H. Colby.
"Polymer Physics".
Oxford University Press, Oxford, UK, 2003.

M. E. J. Newman and G. T. Barkema.
"Monte Carlo Methods in Statistical Physics".
Oxford University Press, 1999.

S. Succi.
"The lattice Boltzmann equation for fluid dynamics and beyond".
Oxford University Press, New York, USA, 2001.
[PDF] (13 MB) 
M. E. Tuckermann.
"Statistical Mechanics: Theory and Molecular Simulation".
Oxfor University Press Oxford Graduate Texts, Oxford, 2010.

F. Martin and H. Zipse.
"Charge Distribution in the Water Molecule  A Comparison of Methods".
Journal of Computational Chemistry 26(1)(97–105), 2004.

E. Kaxiras.
"Atomic and electronic structure of solids".
apud Cambridge, Cambridge, 2003.

Andrew Leach.
"Molecular Modelling: Principles and Applications".
apud Pearson Education Ltd., 2001.
Useful online resources
 Roethlisberger, Tavernelli, EPFL, Lausanne, 2015: [1]
 EBook: Kieron Burke et al.,University of California, 2007: EBook: The ABC of DFT.
 Linux cheat sheet here (53 KB).
 A good and freely available book about using Linux: Introduction to Linux by M. Garrels
 Densityfunctionaltheory tightbinding (DFTB): Phil. Trans. R. Soc. A, 372(2011), 20120483. [2], Computational Materials Science 47 (2009) 237–253 [3]
 "Ab Initio Molecular Dynamics: Theory and Implementation" in Modern Methods and Algorithms, NIC Series Vol 1. (2000) [4]
 University Intranet: Quantentheorie der Molekuele (DE), Springer Spektrum 2015, [5]
 Be careful when using Wikipedia as a resource. It may contain a lot of useful information, but also a lot of nonsense, because anyone can write it.
Lecture
The lecture notes will be uploaded in due time after each lecture on the ILIAS course.
Date  Subject  Resources 

22.04.2021  Quantummechanical methods  Hartree/HartreeFock  
29.04.2021  post HartreeFock methods, DFT (part 1)  
06.05.2021  DFT (part 2), TDDFT  
13.05.2021  Holiday (Christi Himmelfahrt)   
20.05.2021  ab initio MD, QM/MM  
27.05.2021  Holiday (Pfingsten)   
03.06.2021  Holiday (Fronleichnam)   
10.06.2021  classical water models, classical (pair)interactions/forcefields  
17.06.2021  Simulations of macromolecules and soft matter, polymer models  
24.06.2021  charged polymers, PoissonBoltzmann  
01.07.2021  Hydrodynamic methods I (Brownian and Langevin Dynamics)  
08.06.2021  Hydrodynamic methods II (DPD, LatticeBoltzmann)  
15.07.2021  Free energy methods  
22.07.2021  Stateofthe art and novel approaches 
Tutorials
Location and Time
 The time and place of the tutorials will be announced.
General Remarks
 For the tutorials, you will get a personal account for the ICP machines.
 For the reports, we have a nice LaTeX template (7 KB).
Handinexercises
 The worksheets are to be solved in groups of two or three people. We will not accept handinexercises that only have a single name on it.
 A written report (between 5 and 10 pages) has to be handed in for each worksheet. We recommend using LaTeX to prepare the report.
 You have two weeks to prepare the report for each worksheet.
 The report has to be sent to your tutor via email (Azade Yazdanyar or Samuel Tovey).
 Each task within the tutorial is assigned a given number of points. Each student should have 50 % of the points from each tutorial as a prerequisite for the oral examination.
What happens in a tutorial
 The tutorials take place every week.
 You will receive the new worksheet on the days before the tutorial.
 In the first tutorial after you received a worksheet, the solutions of the previous worksheet will be presented (see below) and the new worksheet will be discussed.
 In the second tutorial after you received the worksheet, there is time to work on the exercises and to ask questions for the tutor.
 You will have to hand in the reports on Monday after the second tutorial.
 In the third tutorial after you received the worksheet, the solutions will be discussed:
 The tutor will ask a team to present their solution.
 The tutor will choose one of the members of the team to present each task.
 This means that each team member should be able to present any task.
 At the end of the term, everybody should have presented at least once.